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Abstract 
 

Empirically, sales are I(1). We derive a new model of inventories based on this fact. Our theory 
implies three startling results. First, the variance of production is equal to the variance of sales in 
the long run. Second, this result holds regardless of the strength of production smoothing, 
stockout avoidance, or cost shocks. Third, at business cycle horizons, the conditional variance of 
production is greater than sales. Our theory leads to a different way of estimating, testing, and 
calibrating inventory models. The calibrated model simultaneously accounts for four traditional 
inventory puzzles and three puzzles about inventories and monetary policy. 
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I.  INTRODUCTION 

Inventory movements are important. In the 2007-09 recession, inventories accounted for 

one-third of the fall in US GDP, a huge amount for such a small component of output.1 This is 

typical: Inventory movements account for a wildly disproportionate share of macroeconomic 

fluctuations in most postwar US recessions – and in other countries, too.2 Despite the importance 

of inventory fluctuations, there are large gaps in our understanding of the basic economics of 

inventories. Equally seriously, there are sharp contradictions between the predictions of standard 

theory and the response of inventories to the main macroeconomic policy tool, monetary policy. 

 It has long been thought that inventories act as a shock absorber for fluctuations in 

aggregate demand. Standard economic theories imply that inventories are used to smooth 

production. A long-standing puzzle is why production varies more than sales in the data. A 

variety of theoretical explanations have been proposed.  Our theory implies that these 

explanations all turn out to be irrelevant, at least in the long run. 

 In the data, sales are I(1). We develop a new theory of inventories in which this fact plays 

a central role.  Our model implies three startling new analytical results.  First, in the empirically 

relevant case, the variance of production is equal to the variance of sales in the long run.  

Second, this result holds regardless of the strength of production smoothing, stockout avoidance, 

or cost shocks.  Third, at business cycle horizons, the conditional variance of production is 

greater than sales. This implies that inventories amplify sales shocks during business cycles, 

rather than dampening shocks as production smoothing would imply.3 

 Our theory leads to a different way of estimating, testing, and calibrating inventory 

models. When sales are I(1), our theory implies that inventories will also be I(1), an implication 

that is consistent with the data. This means that we need to derive a cointegrating relationship.4  

This is more difficult than it might initially appear, because we need to linearize the firm’s Euler 

equation around stationary variables, a task that has not been explicitly addressed in the existing 

literature. The workhorse linear-quadratic inventory model does not lend itself to the task. We 
                                                 
1 According to NIPA data, over the six quarters 2008:1-2009:2, the cumulative change in inventory investment was 
34.8% of the cumulative change in GDP. 
2 See Blinder and Maccini (1991) and Ramey and West (1999). 
3 On the theory side, a pioneering paper is West (1990), who, in the context of other issues, obtains a weak 
inequality on the relative variance of production and sales, allowing for both stationary and  1I  sales. We build on 

West's work and obtain more specific results for  1I  sales. 
4 Hamilton (2002), Kashyap and Wilcox (1993), Ramey and West (1999), and Rossana (1993, 1998) are early 
papers that consider the cointegrating relationship. 
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present a model that captures much of the flavor of the linear-quadratic model but that can be 

linearized around stationary variables. We test whether other variables that might affect 

inventories (e.g., input costs) are I(1), as well as testing whether the variables that are assumed to 

be stationary in our theory are, in fact, I(0). 

 Our theory leads to a specific cointegrating relationship that we estimate on aggregate US 

data. Past efforts to estimate the effects of the determinants of inventories, based on I(0) 

econometrics, have often suggested that key variables, such as input costs and the interest rate, 

have coefficients with the wrong sign or statistically insignificant coefficients. In contrast, the 

coefficients in the cointegrating relationship implied by our theory all have the theoretically 

predicted signs and are strongly significant. 

 Our theory shows how the underlying structural parameters can be calculated from the 

cointegrating relationship implied by the model. Using this novel approach to calibration, which 

flows directly from our theory, we simulate our model.  Simulations of the calibrated model 

show that it provides a unified explanation for four traditional inventory puzzles.  In addition, the 

model accounts for three puzzles about monetary policy and inventories that have been 

documented in the previous literature. 

 An important traditional puzzle that has plagued the literature for decades is the Variance 

ratio puzzle.  If production costs are convex, then firms want to smooth production in response to 

demand shocks. This has long been thought to imply that production should vary less than sales.  

But, empirically, production tends to vary more than sales.  As noted above, our theoretical 

model implies that the variance of production should be equal to the variance of sales in the long 

run. Why then do empirical studies typically find that production varies more than sales? 

Simulations of our model reveal that small sample bias is the culprit.  The simulations	indicate	

that,	in	samples	of	the	size	used	in	empirical	studies	in	the	inventory	literature,	

conventional	procedures	will	suggest	that	production	moves	more	than	sales.	

Asymptotically,	however,	the	variance	of	production	is	equal	to	the	variance	of	sales.	

Other traditional puzzles include the following.  Slow adjustment puzzle: As an influential 

survey of the inventory literature puts it, "One major difficulty with stock-adjustment models is 

that adjustment speeds generally turn out to be extremely low; the estimated adjustment speed is 

often less than 10 percent per month. This is implausible when even the widest swings in 

inventory stocks amount to no more than a few days of production. [Blinder and Maccini (1991, 
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page 81)]".   Wen puzzle:  Wen (2005) distinguishes between the movements of output and sales 

at short horizons (less than three quarters) and medium horizons (about 8-40 quarters). At 

medium horizons, he finds that production is more volatile than sales. More surprisingly, he 

finds that production is less volatile than sales at short horizons. Wen argues that these stylized 

facts constitute a "litmus test" for inventory theory and concludes that none of the existing 

explanations for the variance ratio puzzle -- stockout avoidance, cost smoothing, or increasing 

returns to scale -- can account for the behavior of output and sales at both short and medium 

horizons. Input cost puzzle:  When costs are low, firms have an incentive to produce more and 

build up their inventories. It has been surprisingly difficult, however, to find evidence of an 

empirical relationship between observable costs and inventories.  Simulations of our calibrated 

model enable us to explain these traditional inventory puzzles as well. 

Our theory yields a closed-form solution for the conditional variance ratio – the variance 

of output relative to that of sales over the short and medium run. The insights from the formula 

for the conditional variance ratio play a key role in the simultaneous solution of three of the 

traditional puzzles -- the variance ratio, slow adjustment, and Wen puzzles. One of the most 

important insights is that convexity of production costs, which provides the motive for 

production smoothing, is consistent with a higher medium-run variance for production than for 

sales. The formula for the conditional variance ratio shows that the relative importance of two 

key motives -- production smoothing and stockout avoidance -- depends on the steady-state real 

interest rate. Previous theoretical work has not elucidated this role of the interest rate.   Another 

insight is that, despite the fact that the variance of production exceeds the variance of sales at 

business cycle horizons, the model is consistent with slow adjustment speeds in inventory 

investment equations due to the high convexity of production cost and thus the strong incentive 

for the firm to smooth production.  Further, we are able to explain the Wen puzzle by calculating, 

using the calibrated model, that the production smoothing motive dominates high frequency 

inventory movements, but the stockout avoidance motive dominates business cycle movements.  

Finally, our cointegtrating regression provides strong empirical evidence of the effect of input 

costs on inventories in the long-run, which explains the input cost puzzle.  Despite the strong 

evidence of the effect of input costs on inventories, simulations of our calibrated model indicate 

that input costs have little effect on the conditional variance ratio.  
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Here are the three monetary policy puzzles. Mechanism puzzle:  Monetary policy changes 

the interest rate and should affect inventories, since the interest rate represents the opportunity 

cost of holding inventories. In fact, VAR studies find that monetary policy affects inventories. 

But 40 years of empirical research on inventories based on  0I
 
econometrics has generally 

failed to find any significant effect of the interest rate on inventories. Sign puzzle:  Stimulative 

monetary policy lowers the interest rate. A decrease in the interest rate should increase 

inventories. VAR studies find that the short-term effect of stimulative monetary policy is just the 

opposite -- inventories decline. Timing puzzle:   Expansionary monetary policy induces a 

transitory decline in the interest rate. The effect of monetary policy on the interest rate largely 

disappears within one year. But inventories begin to rise only after the transitory shock to the 

interest rate has largely dissipated.   

In our model, the firm's response to an interest rate movement depends on the extent to 

which the firm believes the movement is persistent. This makes the transitional dynamics of the 

inventory response to a change in the interest rate complex and nonlinear – and therefore 

difficult to detect using ܫሺ0ሻ econometrics. In contrast, when we use ܫሺ1ሻ econometrics – 

specifically, the cointegrating regression implied by our model – the data provide strong 

evidence of the role of the interest rate. The combination of model and empirical evidence 

provides the solution to the mechanism puzzle.  

 The key to our model's success in explaining the sign puzzle is the role of inventories in 

buffering demand shocks. A stimulative monetary policy shock lowers the interest rate and 

increases sales, but the firm cannot immediately raise production, so inventories fall at the same 

time that monetary policy is pushing the interest rate down. 

Two elements of our model explain the timing puzzle. First, the firm takes time to learn 

whether a movement in the interest rate is persistent (i.e., represents a regime switch). This 

delays the firm's response to the interest rate movement. Second, production smoothing plays a 

role. A stimulative monetary policy shock lowers the interest rate and increases the desired level 

of inventories. But, because of the convexity of the production cost function, the firm is reluctant 

to adjust production too sharply, so the change in inventories is gradual. 

The paper is organized as follows. Section II introduces the model with  1I  sales. 

Section III states the decision rule for inventories implied by the model.  Section IV presents 
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three startling results regarding the relative variance of output that emerge from the model. 

Section V describes the model’s implications for estimation and testing. Section VI outlines our 

innovative approach to calibration, which flows from the model. Section VII explains how the 

model resolves four traditional inventory puzzles -- slow adjustment, variance ratio, Wen, and 

input cost. Section VIII examines how the model accounts for the three monetary policy puzzles. 

Section IX provides a summary and conclusion. 

 

II. THE MODEL 

 The literature on inventory models has been dominated by the use of linear-quadratic 

approximations of an underlying cost function originally advanced in Holt, et al (1960)5.  In this 

paper, we depart from the linear-quadratic literature by assuming a constant elasticity 

approximation to an underlying cost function.  We utilize a constant elasticity approximation to 

ensure that the equilibrium conditions can be expressed in terms of stationary ratios. 

The representative firm is assumed to minimize the present value of its expected costs 

over an infinite horizon.6  Real costs per period consist of production costs and inventory holding 

costs. Production costs, tPC , are defined as  

 1 2
t t t tPC AY W          (1) 

with, 1 21, 0   , where tY  is real output and tW  is real input costs, which we will measure 

with real input prices of variable factors of production, and tA  is a shift variable that captures the 

state of technology and fixed factors of production.7  Observe that average production costs, tJ , 

are  

                                                 
5 Studies in the literature that have used the linear-quadratic model in work on inventories include, for example, 
Blanchard (1983), Blinder (1986-b), West (1986), Miron and Zeldes (1988), Eichenbaum (1989), Durlauf and 
Maccini (1996), Hamilton (2002), Humphreys, et al (2001), Kashyap and Wilcox (1993), and Wen (2005). 
6 We assume that the firm minimizes discounted expected costs and thereby abstract from market structure issues, 

because our key innovation is to recognize that sales are  1I and to analyze the implications of this empirical fact 

for the long-run behavior of inventories.  See, e.g., Bils and Kahn (2000), Chang, Hornstein and Sarte (2009) and 
Jung and Yun (2011, 2012)  for models that deal with market structure issues.   Even though we abstract from 
market structure issues, our model is quite successful in capturing many aspects of the behavior of inventories. An 
interesting question for future research is whether our characterization of inventory behavior at business cycle 
horizons can be refined by incorporating market structure issues into the model. 
7 In the empirical work, we allow 1  to be freely estimated without imposing the assumption that 1 1  , though

1 1   is required for positive and rising marginal production costs.   A production cost function with rising marginal 

production costs, due to either the presence of fixed factors of production or diminishing returns to scale, has been 
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1 21t
t t t t

t

PC
J AY W

Y
          (2) 

and marginal production costs are 1 tJ .   

 Inventory holding costs, tHC , are 

 
2

1
1 3 1

t
t t t

t

N
HC X N

X



 


 
  

 
       (3) 

with 1 2 30, 0,  and 0,      where tN  is the stock of finished goods inventories at the end of 

period t, and tX  is the level of real sales, which is given exogenously.8 Inventory holding costs 

consist of two basic components. One, 
2

1
1

t
t

t

N
X

X



  
 
 

, which we refer to as stockout avoidance 

costs, captures the idea that, given sales, higher inventories reduce costs in the form of lost sales 

because they reduce stockouts.9  The other, 3 1tN  , which we refer to as storage costs, captures 

the idea that higher inventories raise holding costs in the form of storage costs, insurance costs, 

etc.10 

                                                                                                                                                             
widely used in the inventory literature to capture the production smoothing motive.  See, for example, the papers 
listed in footnote 4 as well as Kashyap and Wilcox (1993) and Hamilton (2002) who, as we do, use cointegration 
methods in their empirical work. 
8 The assumption that sales are exogenous is empirically consistent with the pioneering work on inventories and 
cointegration by Granger and Lee (1989), who conclude (page S151) that, "The sales series may be thought of as 
being largely exogenously determined." Theoretically, sales can be endogenized by specifying an inverse demand 
function. Industry equilibrium can be analyzed with such a demand curve, as in Eichenbaum (1989). Alternatively, 
Christiano and Eichenbaum (1989) and West (1990) derive such a linear inverse demand curve in general 
equilibrium. In linear-quadratic inventory models, this leads to a decision rule that is similar to the case with 
exogenous sales. See, e.g., Ramey and West (1999, Section 4). An alternative approach to endogenizing sales is to 
incorporate inventories into a general equilibrium model.  See Jung and Yun (2005), Khan and Thomas (2007), Wen 
(2008), Wang and Wen (2009), Iacoviello, Schiantarelli and Schuh (2007), among others.  A potentially interesting 
topic for future research is to take the model of firm behavior developed here and incorporate it into a general 
equilibrium model. 
9 See Bils and Kahn (2000) for a model that utilizes a constant elasticity specification of the benefits of holding 
finished goods inventories, with the benefits embedded on the revenue side of the firm.  As discussed in footnote 6, 
there are benefits to abstracting from market structure issues if the objective is to take account of the fact that sales 
are (1)I and analyze the long-run behavior of inventories.  See Maccini and Pagan (2009) for a recent paper that 

uses a specification of the benefits of holding finished goods inventories that is similar to equation (3). 
10 These two components underlie the rationale for the quadratic inventory holding costs in the standard linear-
quadratic model.  The formulation above separates the components and assumes constant elasticity functional forms 
which facilitates log-linearization around steady-state ratios.  Observe that (3) implies a “target stock” of finished 

goods inventories that minimizes finished goods holding costs.  The target stock is N
t

TS  
3

/ 
1


2 
1


2
1 X

t
so that the 

implied stock is proportional to sales.  This is analogous to the target stock assumed in the standard linear-quadratic 
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The firm's information set at time t, t , includes the current and past values of all 

relevant variables, but when the firm chooses tN  its information set is 1t . This assumption, 

which is standard in the inventory literature, captures the idea that inventories buffer demand 

shocks; for example, the firm may meet an unanticipated increase in sales out of its stock of 

inventories. Let t  be a variable real discount factor, which is given by  1/ 1t tr   , where  tr  

denotes the real rate of interest. The firm’s optimization problem is to minimize the present 

discounted value of expected total costs, 

0
1 1

,
t

j t
t j

E C


 

 
 
 

        (4) 

where  0 0. |E E  , and  

 C
t
 PC

t
 HC

t
 A

t
Y

t

1W
t

2 
1

N
t1

X
t











2

X
t


3
N

t1
,    (5) 

subject to the inventory accumulation equation, which gives the change in inventories as the 

excess of production over sales,  

.1 tttt XYNN         (6) 

The optimality conditions that result from this optimization problem are 

 E
t1


t


1
A

t
Y

t

11W
t

2 
t





   0      (7) 

and 

 
2 1

1 1 2 1 3 1
1

0t
t t t t t

t

N
E

X



      


  


                   
    (8) 

where t  is the Lagrange multiplier associated with the constraint (6).  

To interpret the optimality conditions, eliminate the Lagrange multiplier to reduce the 

optimality conditions to  

E
t1
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t


1
A

t
Y

t

11W
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t1
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11W
t1

2  

                                                                                                                                                             
model.  Note that the target stock is not the steady-state stock of finished goods inventories.  The steady-state stock 
minimizes total costs in steady state whereas the target stock merely minimizes inventory holding costs. 
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Now, E
t1


t


1
A

t
Y

t

11W
t

2  is the marginal cost of producing a unit of output today, 

E
t1


t


t1


1
A

t
Y

t1

11W
t1

2  is the discounted marginal cost of producing a unit of output tomorrow, 

and    2 1

1 1 2 1 1 3/t t t t tE N X
    

    is the discounted marginal holding cost. The Euler 

equation thus states that the firm should equate the marginal cost of producing a unit of output 

today and carrying it in inventories to the discounted marginal cost of producing the unit of 

output tomorrow.  

In Appendix B, we show that linearizing the optimality conditions around steady-state 

values yields a linearized Euler equation:  

 
 

    
1 1 1 1 2 1 1

2 2 1 1 1 1 1

1 ln ln ln ln

1 ln ln 0

t t t t t

A
t t t t

E J Y Y J W W

N X Jr Ju c

     

     

  

  

         

      
  (9) 

where J  is steady-state average production cost, 1J  is steady-state marginal production cost11, 

  is steady-state value of average stockout avoidance costs12, which are defined by 

  2 1

1 11t Nt tR x


 


    , 2   is steady-state marginal stockout avoidance costs, NR  is the 

steady-state inventory/sales ratio,  1/ 1 r   ,  r  is the unconditional mean real interest rate, 

x  is the steady-state growth rate of sales, u
t1
A is a stationary shock, c  is a constant, and a bar 

above a variable denotes a steady-state value.  

In the data, sales are I(1), as shown in Table 1, which shows that N  is also I(1). As we 

will show, the fact that sales are I(1) has startling implications. 

 
 
 
 
 
 
 
 
 

                                                 
11 See Hamilton (2002) for a careful discussion of the stationarity properties of marginal productions costs that are 
implied by inventory models. In particular, Hamilton (2002) shows how stationarity of marginal production costs 
arises naturally when sales, costs, output, etc. are nonstationary. 
12 Note that   is average steady state stockout avoidance costs, not average total inventory holding costs.  The latter 

is 3  , which includes both stockout avoidance costs and storage costs. 
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  Table 1 

 Unit Root Tests and Estimated Cointegrating Regression 
 

Panel A: Unit Root Tests – Variables in Cointegrating Regression 

N  X  W
1  3  

-2.808 
[0.194] 

-3.202 
[0.084] 

-2.236 
[0.469] 

-2.732 
[0.223] 

-3.101 
[0.106] 

Panel B: Unit Root Tests – Ratios Assumed to be Stationary  

/N X  /Y X              J   

-3.878 
[0.013] 

-8.727 
[0.000] 

 -6.491 
[0.000] 

-3.855 
[0.014] 

 
N is inventories, X is sales, Y is output, W is input costs, J is average production costs,  is related to marginal stockout 

avoidance costs, 
1 is the probability of being in the low-interest-rate state, and

3 is the probability of being in the high-

interest-rate state. All variables are log-linearly detrended. The cell entries are ADF tests for unit roots, p-values in 
brackets. (The number of lags in the ADF tests was chosen using a standard criterion; i.e., the lag length that minimizes 
the AIC plus 2. All of the unit root tests include a constant and a deterministic trend.) 

  

 Since sales and inventories are I(1), we need to linearize the optimality conditions around 

stationary variables. We assume that the ratios, /Nt t tR N X , Yt t tR Y X , tJ , and t , are 

stationary. Table 1 presents unit root tests. Standard ADF tests reject the null hypothesis of a unit 

root for each of the four ratios. 

We assume further that the real interest rate follows a three-state Markov switching 

process.13  Specifically, we assume that the real interest rate follows 

 tSSt tt
rr                                             (10) 

where t ~ i.i.d. N(0,1) and where {1,2,3}tS   follows a Markov switching process. Let 

1 2 3r r r  , so that, when 1, 2,3tS  , the real interest rate is in the low-interest-rate,  moderate-

interest-rate,  and  high-interest-rate regime, respectively. tS  and t  are assumed to be  

                                                 
13 This is consistent with empirical patterns in real interest rates; see Garcia and Perron (1996) and Maccini, Moore 
and Schaller (2004). The latter paper describes how the firm uses its observations of the real interest rate to develop 
its probability assessments. For a comprehensive discussion of Markov switching processes, see Hamilton (1994, 
Chapter 22). 



10 
 

independent. Denote the transition probabilities governing the evolution of tS by 

1Prob( | ).ij t tp S j S i    Collecting these probabilities into a matrix we have  

    
11 21 31

12 22 32

13 23 33

.

p p p

P p p p

p p p

 
   
  

     (11)   

The firm is assumed to know the structure and parameters of the Markov switching 

process but does not know the true real interest rate regime. The firm must therefore infer tS  

from observed interest rates. We denote the firm’s current probability assessment of the true state 

by πt. That is,    

1

2

3

Prob( 1| )

Prob( 2 | )

Prob( 3 | )

t t t

t t t t

t t t

S

S

S


 



    
         
       

.     (12) 

Given 1t  , the term 1 1t tE r   in equation (9) can be computed as  

2
1 1 v 1 1 1 1 2 2 1 3 3 1rt t t t t tE r P            

          (13) 

where v 1 2 3r [ , , ]r r r   and    2
1 2 3 vr ' P    . Since 1 1 2 1 3 1 1t t t        by definition, we 

can eliminate 2 1t   from the right hand side of (13) to obtain   

              1 1 1 2 1 1 3 2 3 1 2t t t tE r               .       (14) 

     Then, substituting (14) into (9) yields 

 

 
        

1 1 1 1 2 1 1

2 2 1 1 1 1 1 2 1 1 3 2 3 1 2

1 ln ln ln ln

1 ln ln 0

t t t t t

A
t t t t t

E J Y Y J W W

N X Ju J c

     

            

  

   

         

            
(15) 

 

which is the log-linearized Euler equation incorporating the firm’s learning process. 

 

III. DECISION RULE 

The log-linearized Euler equation implied by the model, equation (15),  may be written as 

a second-order expectational difference equation.  Solving this difference equation yields a 

decision rule, which is stated in the following proposition.   
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Proposition 1.  Decision Rule: The model implies that the firm's decision rule is  

 

0 1 1 1 1 1 1 1 3 3 1ln ln ln lnt t X t W t t t tN N X W u                         (16) 

where   

 
1

2 2

1

1
0 1 4 1

2 2

r
r

            
,                  (17-a) 

 
 

2 2

1 1

1

1
Y

N

R

J R

  


 





>0,        (17-b) 

 

0  is a constant, tu
 
is a stationary shock, and YR and NR are the steady state values of YtR

 
and 

NtR
 
respectively. 

Proof: See Appendix C. 

 The coefficient on lagged inventories, 1 , is the stable root of the relevant  characteristic 

equation that emerges from solving the second-order expectational difference equation that is 

implied by the Euler equation.  As we shall see below, 11   defines the speed of adjustment that 

governs the fraction of the gap between “desired” and actual inventories that is closed each 

period by inventory investment.   

The decision rule shock, tu , arises from unanticipated fluctuations in sales and output. In 

the short run, inventories act as a buffer, absorbing these unanticipated fluctuations.  The 

resulting inventory movements involve only transitory deviations from the level of inventories 

dictated by the variables in the decision rule, so tu is stationary. 

The coefficients on sales, input costs and interest-rate-regime probabilities are defined in 

the following propositions. 

Proposition 2.  Decision Rule Coefficient on Sales: The coefficient on sales in the decision rule, 


X

 , is 

 
 
 

2 2 1

1 1 1

1

1 1
Y

N
X

R
r

J R r

   
  

   
    

      


     

(18)

  

 

Further,  0X





   as   

   2 2
1 1

1
1 J

r

  
 

 



.
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 Proof: See Appendix C.   

The term  2 21    is the convexity of stockout avoidance costs and  1 11 J   is the 

convexity of production costs.  Hence, an increase in sales will induce the firm to produce 

enough additional output to raise inventory holdings so long as the present value of the change in 

marginal stockout avoidance costs exceeds the change in marginal production costs, and vice-

versa. 

To understand the intuition for the sign of X , suppose the firm is making a marginal 

decision about output in response to an increase in sales. The cost of producing one more unit of 

output is a one-time cost. The benefit of an additional unit of inventory is the present value of the 

reduction in stockout avoidance costs.  If the latter dominates, the firm will produce enough 

additional output to increase its inventory holdings.  But, if the former dominates, the firm will 

increase output by less than the increase in sales, so its inventory holdings will fall. 

Proposition 3. Decision Rule Coefficient on Input Costs: The coefficient on input costs in the 

decision rule, 
W

 , is 

 
2 1

1 11 1
Y

N
W

r R

R r

 
 

 
   

   
 <0      (19) 

Proof:  See Appendix C.   

The model implies that the coefficient on input costs in the decision rule W will be 

negative.  Intuitively, an increase in input costs raises production costs, which induces the firm to 

cut production and thereby reduce inventory holdings. 

Proposition 4. Decision Rule Coefficients on the Interest-Rate-Regime Probabilities: The model 

implies that the decision rule coefficients on the interest-rate-regime probabilities are 

 
1

1
1

1
1

1

1
1

0
1

Y

N
r

R
I P

R
 








           
      (20-a)   

 
1

1
1

3
1

0

1
1

1
1

Y

N
r

R
I P

R
 








           
      (20-b)  

where  1 2 3     .   Furthermore, if 

 11 22 2 0.5p p          (21-a) 
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 22 33 2 0.5p p          (21-b) 

13 31 0p p  ,         (21-c) 

then, 
1

0  and 
3

0  . 

Proof: See Appendix C. 

Observe that the assumptions that  11 22 2 0.5p p   and  22 33 2 0.5p p   mean that 

the interest rate regimes are persistent, and the assumption that 13 31 0p p   means that the 

economy moves through the medium-interest-rate regime on its way from the high- to low-

interest-rate regime, and vice versa.  Intuitively, if the interest rate regimes are persistent (and 

they are in the data, as reported in (30) below), lower interest rates today imply that future 

interest rates will be lower, reducing the opportunity cost of holding inventories and thereby 

inducing  the firm to hold more inventories.   

 

IV. THE RELATIVE VARIANCE OF OUTPUT: THREE IMPLICATIONS 

A key question about inventories is whether they amplify or dampen demand shocks. In a 

model with sales shocks, West (1990) obtains an inequality –     1Var Y Var X   – that applies 

both when sales follow a stationary stochastic process and when sales are  1I .14 We are able to 

establish a more specific result for the  1I  case.  

To start, we derive the decision rule for output, which takes the form of a first-order 

linear difference equation.15 Using assumptions about the stochastic processes for sales and input 

costs that are consistent with our earlier assumption that they are  1I variables, we solve the 

difference equation backwards to obtain an equation for output as a function of output and sales 

at a fixed date in the past and subsequent sales and cost shocks. By taking the variances of ln tY  

and ln tX , conditional on output and sales at a fixed date in the past, we obtain Proposition 5. 

Proposition 5. Conditional Variance Ratio: 

                                                 
14 More precisely, West asserts that 2 2 0t tE X Y    . Under his assumption that all variables have zero 

unconditional mean, 2 2 2 2
t t t t t tE X Y E X E Y Var X Var Y                       , so his result implies that 

    1Var Y Var X  . 
15 To focus on production smoothing, stockout avoidance, and cost shocks, we here assume a constant interest rate.    
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Var lnY
t
lnY

tn
 

Var ln X
t
ln X

t n1 





 1

1 1
n


1

1
 X 

1 n 
1 

1
 X  1

1
2n

1
1
2











 2

1
1
n

1
1

























 W

2

1 n















1
1
2n

1
1
2














W
2


X
2

 (22) 

where Var lnY
t
lnY

tn 
 
is the variance of ln tY  conditional on ln t nY  , Var ln X

t
ln X

t n1    is 

the variance of ln tX  conditional on  1ln t nX   , 2
X is the variance of the sales shock, 2

W  is the 

variance of the cost shock, and  

 X 
R

N

R
Y


X



2
1 2




1
1 1

J
 r
















1

(1 r 
1
)




0                     (23-a) 

W 
R

N

R
Y


W
 

r
2


1
1


1

1 r  
1











  0,                            (23-b) 

where  X  and W  are the elasticities of output with respect to sales and input costs, 

respectively. 

Proof: See Appendix C. 

In the empirical literature, authors frequently compute what is referred to as the "variance 

ratio".  The calculation takes the data for output and sales over a sample, computes the variance 

of each, and then takes the ratio of the variance of output to the variance of sales. The variance 

ratio is thus an unconditional statistic.  Mathematically, we can obtain the unconditional variance 

ratio from the model by taking the limit of the conditional variance ratio, (22), as n  .  

Proposition 6 states the result. 

Proposition 6. Unconditional Variance Ratio: 

 lim
n

Var lnY
t
lnY

tn
 

Var ln X
t
ln X

t n1 





1       (24) 

 Proof: Proposition 6 follows from taking the limit of equation (22) as n , noting that 

10 1  . QED 
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 Proposition 6 is our key result: When sales are  1I , the variance ratio is 1. This means 

that the variance of production is equal to the variance of sales in the long run. 

 The intuition for our key result flows from the persistence of the shocks to sales. Suppose 

a firm has a convex cost function and faces uncertain demand. If the shocks to demand are 

transitory, it is optimal for the firm to produce at an intermediate level of output rather than to 

sometimes produce at a low level and sometimes at a high level. But suppose there is a 

permanent shock to sales. Then the firm increases output by the same amount as the permanent 

shock, because a permanent shock relocates the optimal level of output. 

Proposition 7. Effect of Production Smoothing, Stockout Avoidance, and Cost Shocks: The 

structural parameters 1 , 2 , 2  and the variance parameter in the stochastic process for input 

costs 2
W  have no effect on the unconditional variance ratio. 

 Proof: Proposition 7 follows directly from Propositions 5 and 6. The structural 

parameters 1 , 2 , and 2  enter the second and third terms of equation (22) – through 1 ,  X , 

W  -- and 2
W  directly enters the third term, but none of these parameters enters the first term. 

As n  , the second and third terms approach 0. QED 

 Proposition 7 means that the strength of production smoothing (reflected in 1 ), stockout 

avoidance (reflected in 2 ), and cost shocks (measured by 2
W  and reflected in 2 ) play no role 

in the long-run response of production to sales. 

 

V. ESTIMATION AND TESTING 

Since Panel A of Table 1 shows that the key variables are  1I , we begin by deriving the 

cointegrating regression. 16 

Proposition 8. Cointegrating Regression:  The model in Section II implies that inventories, sales, 

input costs, and the interest-rate-regime probabilities are cointegrated, with cointegrating 

regression 

1 30 1, 1 3, 1ln ln lnt X t W t t t tN b b X b W b b          ,                      (25) 

where 

                                                 
16 Kashyap and Wilcox (1993) and Ramey and West (1999) provide earlier derivations of a cointegrating vector for 
inventories (both under the assumption of a constant real interest rate). 
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 
   

1 1 2 1

2 2 2 2

1
1

1 1
X Wb

r J r J
b

   
     




  
 

                        (26-a)     

 
 
 

 
 
 2 2 2 2

1 1

1 2 3 21 31 1

1 1J J
b b

r r
 

 
   

     
     

 

 
,    (26-b) 

0b  is a constant, and tv  is a stationary error term.  

Proof: See Appendix C. 

The equations in (26) are of crucial importance in understanding inventory behavior 

because they provide a mapping between the cointegrating regression coefficients and the 

underlying structural parameters. 

 Proposition 8 suggests an immediate test of the model, since it states that the variables in 

equation (25) will be cointegrated. The data are consistent with Proposition 8: The Johansen-

Juselius test rejects the null hypothesis of no cointegrating vector, with a test statistic of 97.9 (p-

value=0.001).17 

We estimate equation (25) using the Stock and Watson (1993) Dynamic OLS (DOLS) 

estimator.  Stock and Watson (1993) show how DOLS reduces the small sample bias in OLS 

estimates of cointegrating regressions.18  Applied to estimating the cointegrating regression in 

(25), the DOLS empirical specification (including constant and time trend) is:  

    
1 30 1, 1 3, 1

, , 1, 1, 1 3, 3, 1

ln ln ln

ln ln .

t T X t W t t t

p p p p

X s t s W s t s s t s s t s t
s p s p s p s p

N b b t b X b W b b

B X B W B B

 

 

 

  

 

     
   

     

           
    (27) 

The results are presented in Table 2. 

 
 
 
 
 
 
 

                                                 
17 For reasons of data availability, the sample is 1959:01 to 2004:08. The number of lags used in the test is set to 
minimize the AIC. 
18 See also Caballero (1994), Caballero (1999), and Schaller (2006) on the small sample bias in OLS estimates of 
cointegrating regressions. Our own Monte Carlo simulations show that the OLS bias is severe enough in our context 
to yield estimates of  b

X
 with the wrong sign. Based on our Monte Carlo simulations, we set 48p  in equation 

(27). 
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Table 2 
 Estimated Cointegrating Regression 

 
Constant Time 

Xb  Wb  
1

b  
3

b  

11.589 

(23.389) 

1.5E-03 

(10.911) 

0.250 

(3.098) 

-0.753 

(-5.244) 

       0.098 

(10.974) 

-0.028 

(-4.216) 

DOLS estimates of the cointegrating vector with t-statistics in parentheses.    

 

 The signs of the coefficients of the cointegrating regression that are implied by the model 

are presented in the next proposition. 

Proposition 9. Signs of the Coefficients in the Cointegrating Regression: 

A. 0Xb



  as   
   2 2

1 1

1
1 J

r

  
 

 


  

B. bW  0  

C. If (21-a), (21-b), and (21-c) hold, then  
1

0b  , and 
3

0.b    

Proof: See Appendix C. 

Proposition 9-A states that, in the long run, an increase in sales will increase (decrease) 

inventories if the present value of the convexity of stockout avoidance costs exceeds (is less 

than) the convexity of production costs. The intuition is the same as that for Proposition 2.  As 

Table 2 shows, our results from estimating the cointegrating regression yield an estimate of Xb  

that is positive and statistically significant (The t-statistic is 3.1.), so our results indicate that 

empirically the stockout avoidance motive dominates the production smoothing motive. 

 Proposition 9-B states that an increase in input costs will reduce long-run inventories. 

Table 2 shows that the data are consistent with Proposition 9-B. The estimate of b
W

is negative 

and strongly statistically significant. (The t-statistic is -5.2.) 

 Proposition 9-C states that a higher probability of the low-interest-rate regime increases 

inventories, and a higher probability of the high-interest-rate regime reduces inventories. Table 2 

shows that the data are consistent with the predictions of Proposition 9-C. The estimate of 
1

b  is 

positive and strongly statistically significant. (The t-statistic is about 11.0.) The estimate of 
3

b is 

negative and also statistically significant. (The t-statistic is -4.2.) 
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VI. CALIBRATION 

Our approach to calibration is innovative and flows directly from the model. Since sales 

(and the other key variables) are 1( )I , we use the cointegrating regression to calibrate the 

structural parameters of the model. Note from the definitions of 
3

and Xb b  that  

 
  3

1

2 3

11

1
X

rb

b r



 




 
.       (28) 

Since 2 3, , and  r    are given from our estimates of the Markov switching model, we can use our 

estimates of 
3

 and Xb b  to obtain a unique value for 1  from (28). Similarly, note from the 

definitions of 
3

 and Wb b  that  

  3

2

3 21
Wb r

b r


 


 

.        (29) 

We can thus use our estimates of 
3

and Wb b to obtain a unique value for 2  from (29).  

We obtain 2 3, , and  r    from our estimates of the parameters of the stochastic process 

for the real interest rate, that is, from our estimates of the elements of  P  and vr .  From our 

estimation of the three-state Markov-switching model, those estimates are  

11 21 31

12 22 32

13 23 33

0.98 0.02 0.00

0.02 0.96 0.05

0.00 0.02 0.95

p p p

P p p p

p p p

   
     
    

     (30) 

and    1 2 3r 1.37 1.77 5.04v r r r    .  Together these estimates imply that the 

unconditional mean of the monthly real interest rate is =0.001r , which gives 0.999  .  

Finally, note from the definitions of 
3

b in (26-b) and recalling that   2 1

1 1NR x


 


       

  
   3 2

2 3 1

( 1)

2 2 1

1

1 1N

r J
b

R x
 

  

  


 


   
      (31) 
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Using the estimate of 
3

b , the normalization19 1 1  , and given values20 for , ,  and NR x J , 

equation (31) gives a single restriction on the value of 2 .  We have assumed that 2 0  . We 

therefore search numerically over 2 ( ,0]    to find the value of 2  that satisfies (31).21 

Thus, we obtain a unique value for each of the model’s structural parameters – there are 

no free parameters. The values that we obtain are reported in Table 3, Panel A.    The calibrated 

parameters are consistent with our theoretical predictions.  In particular, 1 1  , 2 0  , and 

2 0  . 

                                                          Table 3 
                   Calibrated Structural Parameters and Decision Rule Coefficients 
 

Panel A: Cost Function Parameters 

1  2  1  2  

65.097 64.354 1   -0.676 

Panel B: Decision Rule Coefficients 

1  X  W  
1

  
3

  

0.949 0.0128 -0.0386 0.0011 -0.0008 

 
As shown in equation (1), 

1  and 
2  are the elasticities of production cost with respect to output and with respect to 

input costs, respectively. As shown in equation (3), 
2  is the elasticity of stockout avoidance costs with respect to 

the inventory/sales ratio. As is common in the inventory literature, 
1  is normalized to 1. Consequently,

1 2 , and 

2 , are measured relative to
1 . (The storage cost parameter 

3  is not included in the table because it does not affect 

the decision rule coefficients.) The coefficients 
1 , 

X , 
W , 

1 , and 
3  are the coefficients in the firm's decision 

rule on lagged inventories, sales, input costs, and the Bayesian probabilities of the low-interest-rate and high-
interest-rate regimes, respectively. 

 

Similarly, equations (18), (19) and (20) provide the mapping from the structural 

parameters to the decision rule coefficients.  These can be used to derive calibrated values of the 

                                                 
19 This normalization implies that we can only evaluate the relative magnitude of other structural parameters such as 

1  and 2 . A comparable situation exists with linear-quadratic inventory models, where the relative magnitude of 

key structural parameters determines the behavior of inventories. See, e.g., Ramey and West (1999), p. 894. 
20 , ,  and NR x J  are steady-state ratios. For 

NR  and x , we therefore use the sample mean values of 
t tN X  and 

1t tX X , respectively, which gives 0.468NR  and 0.00108x  . Note from J
t
 A

t
Y

t

1W
t

2 Y
t
 that J denotes the 

steady-state value of average production costs. Based on data from the 1992 Census of Manufacturing, we estimate 
production costs to be 73.4% of total output and set 0.734J  . 
21 Our numerical search shows that only one value of 2  satisfies (31).   
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decision rule coefficients.  The calibrated values of the decision rule coefficients are reported in 

Table 3, Panel B.   From Proposition 2, 
X

will be positive if the present value of the change in 

marginal stockout avoidance costs exceeds the change in marginal production costs.  The 

calibrated structural parameters imply that X  is indeed positive.  Further, from Propositions 3 

and 4 and the sufficient conditions stated in (21), the model implies that W  0 ,  1
 0 and 

 3
 0 . That is, our model implies that an increase in costs or an increase in the probability that 

the economy is in the high-interest-rate regime lowers inventories.  The calibrated structural 

parameters imply calibrated values of the decision rule coefficients that are consistent with these 

predictions. 

 

VII. TRADITIONAL PUZZLES   

A. Slow Adjustment Puzzle 

 In early empirical work on inventories, a common specification was the stock-adjustment 

equation. Lovell (1961), for example, developed a model which yielded an inventory investment 

relationship of the form: 

 *
1 1N  N   N   N  uN

t t t t t               (32) 

where u N
t is a shock. In the Lovell framework, inventory investment is proportional to the gap 

between the actual and desired stock of inventories.  The proportionality factor,  , measures the 

speed of adjustment, as it captures the fraction   of the deviation between desired and actual 

inventories that is closed each period. The slow adjustment puzzle is that estimated values of   

appear to be implausibly low.  Blinder and Maccini (1991, page 82) summarize the puzzle as 

follows, "Theory strains to explain low adjustment speeds unless the incentive to smooth 

production is extremely strong, which is hard to reconcile with the fact that production is more 

variable than sales. So the puzzle remains." 22 

                                                 
22 A number of possible explanations have been put forward to explain the slow adjustment puzzle. One explanation 
emphasized econometric problems -- either omitted variables or problems with the econometric procedure – see 
Maccini and Rossana (1984) and Blinder (1986a).  Another explored the effect of aggregation bias – see Christiano 
and Eichenbaum (1989), Seitz (1988), Blinder (1986a), and Coen-Pirani (2004). See Blinder and Maccini (1991) 
and Ramey and West (1999) for surveys. 
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 To derive an inventory investment relationship in our model, subtract 1ln tN   from both 

sides of (26) to get 

  *
1 1 1ln ln 1 ln lnt t t t tN N N N u             (33) 

where 

  *
1 1 1 1 1 3 3 1

1

1
ln ln ln

1t X t W t t t oN X W   
         


  (34) 

is the “desired” stock of (log) inventories.  Comparing (33) to (32) we see that 11   measures 

the speed of adjustment. Using the definition of 1  in (17-a), this speed of adjustment term can 

be written as  

   
1

2 2

1

1
1 4

2
r r   
              

    (35)  

where   is defined in (17-b).  

Straightforward calculations reveal the relationship between the speed of adjustment, the 

convexity of production costs, and the convexity of stockout avoidance costs.  To see this, 

differentiate (35) and use (17-b) to get  1 11 / 0     , which states that greater convexity of 

production costs reduces the speed of adjustment.  Similarly,   1 21 / 0     , which states 

that greater convexity of stockout avoidance costs increases the speed of adjustment. 

Intuitively, greater convexity of production costs increases the incentive to smooth 

production, which makes the firm slow to change the level of production. With respect to 

stockout avoidance, the intuition is as follows. When the firm pays a cost as a result of not 

having enough inventory, the firm wants to increase inventories when sales go up, so long as 

sales are positively serially correlated. The desired inventory level rises immediately when sales 

increase. The stronger the stockout avoidance motive, the more rapidly the firm wants to adjust 

output. Table 4 illustrates the effect of 1  and 2  on the speed of adjustment. 

In general, it is not possible to recover the transition dynamics of a variable from a 

cointegrating regression. Intuitively, this is because the cointegrating regression captures the 

long-run behavior of the variable, abstracting from transition dynamics. Our model is an 

exception, because the “stickiness” of inventories arises from the structure of the model, rather 

than from an ad hoc adjustment cost function. By deriving the cointegrating regression from the 
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model, we are able to recover the structural parameters from the cointegrating regression 

coefficients. The structural parameters (which are reported in Table 3) imply that the speed of 

adjustment  11 0.051    . This is consistent with estimates from the large empirical 

literature on the speed of adjustment of inventories. (See Blinder and Maccini (1991) and Ramey 

and West (1999).) The slow speed of adjustment that flows from the model implies that the 

incentive to smooth production is quite strong. 

 
                                                              Table 4 

 Production Smoothing, Stockout Avoidance, and the Speed of Adjustment 
 

	 	ଶߜ

	ଵߠ

	 െ0.15	 െ0.35	 െ0.676	 െ1.4	 െ3	

2	 0.5309	 0.7255	 0.8712	 0.9690	 0.9973	

10	 0.1087	 0.1859	 0.3020	 0.5501	 0.9001	
65.097	 0.0164	 0.0294	 0.0513	 0.1130	 0.3395	

100	 0.0105	 0.0190	 0.0335	 0.0748	 0.2368	

200	 0.0050	 0.0093	 0.0166	 0.0378	 0.1261	
 
The entry in each cell is the speed of adjustment, ሺ1 െ ଵߠ ଵሻ.  The calibrated values areߣ ൌ 65.097 and ߜଶ ൌ
െ0.676. 
 

Equations (33) and (34) and Table 4 help to explain why 0I ( )  econometrics has largely 

been a failure in the study of inventories. When the speed of adjustment of inventories is slow, it 

takes so long for movements in the variables that determine long-run desired inventories , *
tN , to 

have an effect on current inventories, tN , that traditional  0I ( )  approaches, such as adding 6 or 

12 lags, typically fail to pick up the effects of variables like the interest rate and input costs.23 

B. Variance Ratio Puzzle 

 Proposition 6 shows that, when sales are I (1) (as they are in the data), the variance ratio 

is 1. Why then do empirical researchers typically obtain estimates of the variance ratio that are 

greater than 1? Our simulations of the calibrated model reveal that this occurs because of small 

sample bias in the variance ratio, as shown in Table 5. Our empirical results are based on a 

sample of 548 monthly observations, a relatively large number of observations (and long time 

                                                 
23 A similar point has been made in the literature on fixed capital by Caballero (1994, 1999) and Schaller (2006). 
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span) for empirical work in macroeconomics. The simulations show that the variance ratio, 

calculated over this number of monthly observations, is about 1.02. For a sample of 2500 

monthly observations, the variance ratio is still slightly greater than 1, about 1.01. It is only with 

a sample size of 5000 observations, roughly an order of magnitude larger than the usual sample 

size, that the variance ratio converges to 1.00. In our discussion of the Wen puzzle below, we 

explain why this small sample bias arises. 

Table 5 
Simulation Evidence on Small Sample Bias in the Variance Ratio 

 
Sample Size 

(Number of Monthly Observations) 
548 1000 2500 5000 

Median Variance Ratio 1.02 1.01 1.01 1.00 
 
This table is based on simulations of the calibrated model for different sample sizes. The second row reports the 
median variance ratio over 1000 repetitions of the simulation. Structural parameters are calibrated to the data as 
shown in Table 3. 
 

C. Wen Puzzle and the Conditional Variance Ratio 

i. Accounting for the Wen Puzzle 

 Wen (2005) distinguishes between the movements of production and sales at medium 

horizons (about 8-40 quarters) and short horizons (less than three quarters). At medium horizons, 

he finds that production is more volatile than sales. More surprisingly, he finds that production is 

less volatile than sales at short horizons. His empirical work shows that these stylized facts hold 

for the US, a number of other industrialized countries (Australia, Austria, Canada, Denmark, 

France, Finland, Great Britain, Japan, the Netherlands, and Switzerland), Europe as a whole, and 

the OECD as a whole.  Wen (2005, p. 1533) argues that, "The stylized fact that production and 

inventories exhibit drastically different behaviors at the high- and low-cyclical frequencies offers 

a litmus test for [inventory] theories."24     

 Define the empirical conditional variance ratio as 
                                                 
24 Wen’s argument runs as follows. The short-horizon behavior of output and sales is consistent with production 
smoothing but not with stockout avoidance. The medium-horizon behavior of output and sales is consistent with 
stockout avoidance but not with production smoothing. The medium-horizon behavior of output and sales is 
consistent with increasing returns to scale (i.e., concavity of the production cost function), but the short-horizon 
behavior is not. Finally, if cost shocks are incorporated into a model with a production-smoothing motive, cost 
shocks can make output more variable than sales, but: 1) cost shocks make output more variable than sales at both 
short and medium horizons; or 2) when non-negativity constraints on inventories dominate, cost shocks have no 
effect on the correlation between inventory investment and sales. Wen (2005) thus concludes that none of the 
existing explanations for the variance ratio puzzle -- stockout avoidance, cost shocks, or increasing returns to scale -- 
can simultaneously account for the behavior of output and sales at both short and medium horizons. 
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 
  1

Var ln ln

Var ln ln

t t n

t t n

Y Y
CVR

X X



 





.      (36) 

To motivate the empirical CVR, note that ln tX , conditional on  1ln t nX   , is the sum of 

subsequent sales shocks: 

 
 

1

1
1

ln ln
n

X
t t jt n

j

X X u


 


  .       (37) 

Thus, the variance of log sales, conditional on  1ln t nX   , is 

 
Var ln X

t
ln X

t n1    Var ln X
t
 ln X

t n1    n1  X
2 .   (38) 

In our data, the empirical CVR shows the pattern documented by Wen (2005).   As shown in the 

first row of Table 6, at short horizons, CVR <1; for example, for 1n   month, CVR = 0.62; for 

2n   months, CVR = 0.71.   At business cycle horizons, CVR >1; for example, for 50n   

months, CVR = 1.02; for 70n   months, CVR = 1.01. 

Using Proposition 5, we can calculate the CVR in the model as a function of the horizon 

n .  The solid line in Figure 1 shows the CVR from our calibrated model which is less than 1 at 

short horizons and greater than 1 at business cycle horizons. The second row of Table 6 reports 

the numerical magnitudes, based on the calibrated model, for selected n . The model is 

successful in accounting for the Wen puzzle. 

Table 6 
Conditional Variance Ratio for Selected n  

 
 Short Horizons Business Cycle Horizons 

1n   2n  50n  70n 
Data 0.62 0.71 1.02 1.01 
Model 0.56 0.74 1.02 1.02 
The row labeled “Data” reports the empirical conditional variance ratio, which is defined in equation (36). The row 
labeled “Model” reports the conditional variance ratio from the model, which is calculated from equation (22) with 
the structural parameters calibrated to the data as shown in Table 3. 

 

 The intuition for the model's explanation of the Wen puzzle involves the balance between 

the production smoothing and stockout avoidance motives. The solid line in Figure 1 shows the 

CVR from the model when the structural parameters are calibrated to the data.  If the production-

smoothing motive were stronger (relative to the stockout avoidance motive), the CVR would be 

lower at all horizons. The dashed line in Figure 1 illustrates the case where 1  is substantially 
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higher than the value in the data.25 This makes the production smoothing motive stronger; in fact, 

so much stronger that the production smoothing motive dominates at all horizons and output 

varies less than sales at all finite horizons. The explanation for the Wen puzzle therefore runs as 

follows. The firm engages in both production smoothing and stockout avoidance. At short 

horizons, production smoothing dominates, so the variance ratio is less than 1. At business cycle 

horizons, stockout avoidance dominates, so the variance ratio is greater than 1. 

Figure 1 
 Conditional Variance Ratio 

 

 
 
The solid line shows the conditional variance ratio (CVR) calculated from equation (22), where the structural 
parameters are calibrated using the cointegrating regression. The dashed line shows the conditional variance ratio for 

1  equal to 2.5 times the calibrated value. A larger value of 
1  implies greater convexity of the production cost 

function and thus a stronger production-smoothing motive. The horizontal axis shows the horizon (n) in months. 
 

Our analysis of the Wen puzzle provides insight into why empirical researchers typically 

find that the (unconditional) variance ratio is greater than 1. In the model, starting at about the 9-

month horizon, the conditional variance ratio is greater than 1. As n  (i.e., as the horizon 

gets very long), the variance ratio approaches 1. But, in a finite sample, empirical researchers are 

effectively taking the average of the conditional variance ratio, which is above 1 for most values 

of n . The result is the finite sample bias that we document above. 

 
                                                 
25 The relevant structural parameters, 1 and 2  , enter 1   and  X  in equation (22) as a ratio. See equation (17) 

for  and how it enters 
1 , and equation (23-a) for  X . Thus, setting 1  higher is equivalent to setting 2  

proportionately lower.  
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ii. Reconciling the Conditional Variance Ratio with Slow Adjustment 

The solid line in Figure 2 shows the path of sales in response to a one-time permanent 

sales shock. The line with open circles shows the response of production, based on the calibrated 

model. In the long run, production moves by the same amount as sales. In the short run, 

production moves more than sales. This short-run movement of production relative to sales is the 

issue highlighted by Blinder and Maccini (1991): How can we reconcile the fact that production 

varies more than sales with the slow adjustment of inventories, which, according to the standard 

analysis, is the result of a strong incentive to smooth production?  If the production smoothing 

motive were the only force, production would change by less, in the short run, than the amount 

of a sales shock. Why, then, does production vary more than sales? The answer is the balance 

between production smoothing and stockout avoidance. The line with triangles in Figure 2 

illustrates what would happen if the production smoothing motive were substantially stronger. In 

the long run, production would still rise by the same amount as sales, but, in the short run, 

production would rise by less than sales. 

Figure 2 
 Response of Production to a Sales Shock 

 

 
 
The solid line shows the path of sales in the wake of a one-time, one-standard-deviation permanent sales shock. The 
line with open circles shows the response of output in the model when the structural parameters are calibrated using 
the cointegrating regression for inventories. The line with solid triangles shows what the response of output would 

be if 1  were 2.5 times
 
its calibrated value.  

 
iii. Role of the Interest Rate 

In	a	model	with	a	stockout	avoidance	motive,	the	firm	has	a	long‐run	desired	stock	

of	inventories,	 *
tN ,	which	is	shown	in	equation	(34).	Proposition	2	gives	the	mathematical	
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expression	for	 X ,	which	determines	whether	or	not	a	positive	sales	shock	increases	 *
tN .	

Proposition	2	reveals	that	the	interest	rate	plays	a	key	role:	The	criterion	for	 *
tN 	to	

increase	in	response	to	a	positive	sales	shock	depends	on	the	present	value	of	the	convexity	

of	stockout	avoidance	costs,	and	the	present	value	depends	on	 r .	To	the	best	of	our	

knowledge,	our	work	is	the	first	to	highlight	the	role	of	the	real	interest	rate	in	

understanding	the	relative	variances	of	output	and	sales. 	

 The role of the real interest rate in determining the CVR is illustrated in Figure 3. In our 

data, the mean annual real interest rate is 1.2%, which corresponds to a monthly real interest rate 

of 0.1% (or r = 0.001). This implies that the production-smoothing motive dominates the CVR 

at short horizons, as shown by the solid line. If the real interest rate were lower, the stockout 

avoidance motive would be even more important and the CVR would be greater than 1 at still 

shorter horizons, as shown by the line with open circles. If the real interest rate were higher, the 

stockout avoidance motive would be less important.  For example, for a mean annual real interest 

rate of 5.0%, production smoothing would dominate at all horizons and the CVR would never be 

greater than 1, as illustrated by the line with triangles. 

 

Figure 3 
 The Effect of the Real Interest Rate on the Conditional Variance Ratio 

 

       

The solid line shows the conditional variance ratio calculated from equation (22) where the annual mean real interest 
rate is equal to our estimate of 1.2%.  The line with open circles shows the conditional variance ratio for a mean real 
interest rate of 0.3% and the line with triangles shows the conditional variance ratio for a mean real interest rate of 
5%. 

D. Input Cost Puzzle 

An increase in input costs should cause firms to reduce their inventories. However, in the 

past it has been difficult to find evidence of a significant relationship between inventories and 
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observable costs. Proposition 8 shows that real input costs appear in the cointegrating regression 

for inventories with coefficient Wb . Table 2 reports that the estimated value of Wb  is -0.753, 

which is negative, as predicted by Proposition 9. The t-statistic on Wb  is -5.244. Thus, the 

cointegrating regression provides significant evidence that observable costs affect inventories.  

Why does the cointegrating regression provide stronger evidence than previous studies? 

Each period, the firm is hit by sales shocks (an unanticipated change in demand) and production 

shocks (e.g., due to a supply chain disruption), represented in the model by X
tu  and Y

tu , 

respectively. These can immediately move inventories by a large amount, with no change in 

input costs. In contrast, changes in input costs affect *N , and the firm adjusts very slowly 

towards *N .  0I  econometric techniques tend to emphasize short-run fluctuations in the 

variables, where the relationship between inventories and input costs is very noisy. Without the 

introduction of lagged variables,  0I  techniques only capture the contemporaneous 

relationship. When adjustment is slow, very long lags may be needed, and there is no guarantee 

that the lag structure will be stable over time. In contrast,  1I  econometric techniques 

(specifically, the cointegrating regression) emphasize the relationship between inventories and 

the variables that determine inventories in the long run. 

In the literature, cost shocks have been a leading potential explanation for the variance 

ratio puzzle.26 In our model, as in other models, production-cost shocks tend to increase the 

conditional variance ratio. However, numerical results based on equation (22) show that the 

contribution of production cost shocks to the conditional variance ratio is negligible – less than 

1%. 

Our analysis explains how cost shocks can have a statistically significant effect on 

inventories in the long run but little effect on the conditional variance ratio.  In a model where 

the variables are  0I , a shock that reduces marginal production costs today tends to induce 

intertemporal substitution of production from the future to the present, leading production to 

change without a change in sales. As Table 1 shows, tW  is  1I , so input cost shocks are 

permanent. But, if the shock is permanent, there is no reason for intertemporal substitution. The 

                                                 
26 In their survey, for example, Ramey and West (1999) discuss highly persistent shocks to production cost as an 
explanation for the slow adjustment and variance ratio puzzles. 
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shock still has an effect on production because it changes *
tN , but this effect is slow and subtle 

(hard to even detect with  0I  econometric techniques, as discussed above). This is why input 

cost shocks have little effect on the conditional variance ratio. 

 
VIII. MONETARY POLICY PUZZLES 

A. Monetary Policy Shocks 

To identify monetary policy shocks we follow Bernanke and Mihov (1998) and estimate 

a vector autoregression whose variables are divided into a policy block and a non-policy block. 

In our version of the Bernanke-Mihov VAR, the non-policy block consists of the natural 

logarithms of real sales ( ln tX ), the GDP deflator, real input prices ( ln tW ), and real inventories  

( ln tN ).27  Our policy block, which is the same as Bernanke and Mihov’s, consists of total 

reserves, non-borrowed reserves, and the Fed funds rate and is restricted using plausible 

assumptions about the market for bank reserves. Details of this Bernanke-Mihov VAR are 

provided in Appendix D. 

 

Figure 4 
Empirical Response of the Probabilities to a Stimulative Monetary Policy Shock 

 
     A. Probability of Low-Interest-Rate Regime          B. Probability of High-Interest-Rate Regime 

                    
The solid lines in Figures 4-A and 4-B present the impulse response function of 

1  (the probability of the low-real-

interest-rate regime, as perceived by the firm) and 
3  (the probability of the high-real-interest-rate regime, as 

perceived by the firm), respectively, to a one-standard-deviation stimulative monetary policy shock. The horizontal 
axis shows time in months. 

 

                                                 
27 We found that the inclusion of input prices was sufficient to address the price puzzle and so do not add a 
commodity price index. 
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Having obtained the monetary policy shocks from the Bernanke-Mihov VAR, we then 

estimate a three-variable VAR with the monetary policy shocks, 1 , and 3 . 28  Figure 4 shows 

the impulse response functions of 1  and 3  to a one-standard-deviation easing of monetary 

policy. As Figure 4-A shows, easing monetary policy increases the probability of the low-

interest-rate state, with the peak response occurring about six months after the shock. Results are 

similar for 3 . The ergodic probability of the high-interest-rate state is about 0.19. The peak 

decline in 3  is 0.036, which represents a decrease of about 19% in the likelihood of the high 

interest rate regime. The effect of monetary policy on 1  and 3  is quite persistent, with more 

than half the peak effect on 1 , for example, still present two years after the shock. 

B. The Mechanism Puzzle 

Previous empirical studies have found little evidence that the interest rate affects 

inventories.29  If the interest rate doesn't affect inventories, how does monetary policy influence 

inventories?30 If the interest rate does affect inventories, why have more than 40 years of 

empirical studies failed to find the relationship? 

 In our theoretical model, the real interest rate is subject to both transitory and persistent 

shocks. Purely transitory shocks have little effect on inventories, but firms do react to shocks that 

may be persistent. In the past, empirical inventory research has primarily used (0)I techniques.31  

These techniques tend to emphasize high-frequency movements in the data, where there is much 

transitory variation in the interest rate without corresponding variation in inventories – and much 

transitory variation in inventories (due to their role in buffering sales shocks) without 

corresponding variation in the interest rate. 

 Table 2 reports our estimates of the cointegrating regression. The key coefficients for the 

mechanism puzzle are those on 1  (the probability of the high-interest-rate regime) and 3 (the 

                                                 
28 We use six lags of each variable. We do not include the probabilities in the Bernanke-Mihov VAR because there 
is too much collinearity between the probabilities and the interest rate. 
29 See Blinder and Maccini (1991, page 82). One exception is Maccini, Moore, and Schaller (2004), who also use 

I 1 econometrics. In contrast to the current paper, they do not address the sign and timing puzzles. 
30 VAR-based studies that find that monetary policy shocks affect inventories include Bernanke and Gertler (1995), 
Christiano, Eichenbaum, and Evans (1996), and Jung and Yun (2011).  
31 There are a few exceptions, including Granger and Lee (1989), Kashyap and Wilcox (1993), and Rossana (1993, 
1998), but none of these papers estimate the effect of the real interest rate on inventories.  Rossana (1993) comes 
closest by providing separate point estimates of the effects of the nominal interest rate and inflation. 
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probability of the low-interest-rate regime). Theory predicts that the coefficient on 1  should be 

positive and the coefficient on 3  should be negative. The data confirm both of these theoretical 

predictions. The coefficients on both 1  and 3  are significantly different from zero.  

The decision rule for the firm’s choice of inventories, equation (16), shows that monetary 

policy shocks can affect inventories through their effects on sales, input costs, 1  and 3 . 

Having calibrated our model to the cointegrating regression, we can use the calibrated decision 

rule to measure the economic importance of the effect that interest-rate movements have on 

inventories.  In general, the previous literature has treated the interest rate as constant and so has 

been unable to measure the effect of interest-rate movements. 

We define the opportunity-cost effect as the change in inventories that results from a 

monetary policy shock, holding sales and input costs constant. To measure this effect we 

generate the theoretical response of inventories to a monetary policy shock.  We first use our 

Bernanke-Mihov VAR to find the response of sales and input costs to a one-standard-deviation 

stimulative monetary policy shock. We then use the response of sales and input costs together 

with the response of 1  and 3  (as shown in Figure 4) in our calibrated decision rule to calculate 

the theoretical response of log inventories to the monetary policy shock. Using this theoretical 

response we can measure the peak effect of a monetary policy shock on log inventories. 

Repeating this exercise, but holding sales and input costs constant, we find that the opportunity-

cost effect is equal to 78% of the peak effect. Thus, although the opportunity-cost effect has been 

extremely difficult to detect using (0)I  econometric techniques, our calibrated model suggests 

that it is economically important. 

C. The Sign Puzzle 

Stimulative monetary policy reduces the interest rate and should, therefore, increase 

inventories. However, VAR studies find that the short-term effect of stimulative monetary policy 

is to decrease inventories. This is the sign puzzle. To verify that the sign puzzle exists in our 

data, we use our Bernanke-Mihov VAR to calculate the empirical response of inventories to a 

monetary policy shock. The responses of the Fed funds rate and inventories to a one-standard-

deviation stimulative monetary policy shock are shown in Figure 5.  As found in other studies,  
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Figure 5 
 Empirical Responses to a Stimulative Monetary Policy Shock 
 

             A.  Federal Funds Rate      B.  Inventories 

                   
 
Figures 5-A and 5-B present the empirical impulse response function of the Fed funds rate and inventories, 
respectively, to a one-standard-deviation stimulative monetary policy shock. The horizontal axis shows time in 
months. 
 
the Bernanke-Mihov VAR estimated with our data shows that the initial response to a stimulative 

monetary policy shock is a decline in both the Fed Funds rate and inventories. 

Does our model generate this negative short-term decline in inventories for a stimulative 

monetary policy shock?  As explained in our discussion of the mechanism puzzle above, we use 

the empirical response of sales, input costs, 1 , and 3  in our calibrated decision rule, equation  

Figure 6 
 Theoretical Response of Inventories to a Stimulative Monetary Policy                   
Shock and the Effect of the Convexity of the Production Cost Function 

 

                          
 
The solid line displays the theoretical response of inventories to a one-standard-deviation stimulative monetary 
policy shock, based on the model presented in Section II, calibrating the structural parameters using the 
cointegrating regression, as shown in Table 3. The dashed line shows the theoretical response of inventories based 
on setting θ1 (the parameter that controls the convexity of the production cost function) equal to 0.5 times the value 
obtained when the parameters are calibrated using the cointegrating regression. The horizontal axis shows time in 
months. 
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(16), to find the theoretical response of log inventories to a monetary policy shock.32 The solid 

line in Figure 6 presents this theoretical response of inventories to a stimulative monetary policy 

shock. As the figure shows, the initial response is for inventories to decline. The key to 

understanding our model's success in matching the empirical sign puzzle is the role of 

inventories in buffering demand (sales) shocks. Sales rise in the wake of a stimulative monetary 

policy shock. Production does not respond immediately, so inventories fall as they buffer the 

positive sales shock. 

D. The Timing Puzzle 

 The transitory effect of a monetary policy shock on the Fed funds rate is shown by the 

empirical impulse response function in Figure 5-A. Within eight months, the Fed funds rate 

returns to its pre-shock level. It is only many months later that inventories rise above their pre-

shock level, as shown in Figure 5-B. The peak effect of the monetary policy shock on inventories 

occurs years after the shock.33 This is the timing puzzle.  

Regime switching and learning provide part of the explanation for the timing puzzle. 

Because of learning, the Bayesian probabilities of being in a given interest rate régime respond 

slowly to a change in the interest rate. This can be seen in Figure 4-A, where more than one-third 

of the effect of the monetary policy shock on 1  is still present three years after the shock. 

Simulations of the calibrated model show that learning delays the response of inventories by 

about one quarter (three months). 

 Production smoothing also plays a role. An interest rate shock changes the desired long-

run inventory level. However, changing output away from the usual level is expensive because of 

the convexity of the cost function. If firms recognize that the interest rate shock is transitory, 

they will adjust output and the stock of inventories little, if at all. Because firms are reluctant to 

adjust output, the change in the stock of inventories is delayed. 

 The convexity of the cost function is measured by the parameter 1 . In Figure 6, we 

illustrate the effect of changes in 1  on the theoretical impulse response function for inventories. 

If we set 1  equal to half the value implied by the cointegrating regression estimates, the peak 

effect on inventories occurs twenty-eight months earlier (the dashed line in Figure 6). Figure 6 

                                                 
32 Since the monetary policy shock is by definition unanticipated we assume that the initial increase in sales is also 
unanticipated. 
33  This is also documented in Christiano, Eichenbaum, and Evans (1996) and Jung and Yun (2005). 
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illustrates another interesting point. In the inventory literature, it has been very hard to pin down 

the convexity of the cost function. In their survey paper, Ramey and West (1999) report a wide 

range of estimates. Using the cointegrating regression to calibrate 1 , we obtain a value of 1  

that leads to a theoretical impulse response function that is similar to the empirical impulse 

response function. As Figure 6 illustrates, using a value of 1  that is 50% smaller leads to a 

theoretical impulse response function that no longer matches the empirical response: the peak 

response of inventories is too early and too large. Using a value of 1  that is much larger than the 

calibrated value (e.g., 50% larger) leads to a theoretical impulse response function that no longer 

even qualitatively resembles the empirical response. Methodologically, this suggests that good 

estimates of a well-specified cointegrating regression may provide a better technique for 

calibrating model parameters. Economically, it narrows the range of plausible estimates of the 

convexity of the cost function.34 

 

IX.  SUMMARY AND CONCLUSIONS  

 Less priority has been given to research on inventories in recent years than in the 

preceding decades. An important reason is probably the belief that inventories tend to cushion 

shocks (particularly, demand shocks). Since macroeconomists have been searching for 

mechanisms that amplify shocks, inventories have not seemed like a particularly promising 

research avenue. 

 We begin with an empirical fact: Sales are ܫሺ1ሻ. We build a new model of inventories in 

which this fact plays a central role. Although our model retains some of the familiar elements of 

the long-established linear-quadratic model (such as production smoothing and stockout 

avoidance), we obtain startling results. 

 Our most startling result is that inventories do not cushion demand shocks. In the long 

run, Proposition 6 states that production moves as much as sales. Based on Proposition 5, we 

find that, at business cycle horizons, production moves more than sales. 

 We derive three propositions from the model that involve empirical predictions. 

Proposition 8 states that inventories are cointegrated with sales and the other variables that 

determine long-run inventories in our model. The data support this prediction. The statistical 

                                                 
34 For example, it rules out the possibility of a concave cost function, an explanation suggested by Ramey (1991) for 
the variance ratio puzzle. 
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evidence is strong. (The p-value is 0.001.) Proposition 9-B states that an increase in input costs 

decreases inventories in the long run. The relevant empirical coefficient (ܾௐ) is negative and 

strongly statistically significant. Proposition 9-C states that a higher probability of the low-

interest-rate regime increases inventories and a higher probability of the high-interest-rate regime 

reduces inventories in the long run. The data support both predictions, and the relevant 

coefficients are strongly statistically significant. 

 In addition to passing these direct empirical tests, our model explains the four traditional 

inventory puzzles – the variance ratio, slow adjustment, Wen, and input cost puzzles. Moreover, 

our model accounts for three important puzzles about the effect of monetary policy on 

inventories. 

 The monetary policy puzzles involve the dynamic response of inventories to a monetary 

policy shock. Over the past two decades, an important challenge for macroeconomic models has 

been to account for the hump-shaped response of many aggregate variables to a monetary policy 

shock. A series of papers have shown that inventories display a more complex "double-hump" 

response. In reaction to a stimulative monetary policy shock, inventories decline in the first few 

months, rise until they reach a peak about three years after the shock, and then decline again. The 

initial decline is the sign puzzle: Low interest rates are associated with low inventories, instead 

of the reverse. The subsequent rise is the timing puzzle: Inventories begin to rise after the fall in 

the interest rate has largely disappeared. Our calibrated model is successful in capturing the 

"double-hump" dynamic response of inventories to a monetary policy shock. 

 Two further points should be emphasized. First, we do not allow ourselves any free 

parameters. The key structural parameters are calibrated using the cointegrating regression 

derived from the model. There are no free parameters that we can use to match empirical 

moments. 

 Second, in the previous papers that attempt to explain inventory puzzles, the objective 

has been to explain "static moments" such as the relative variance of production and sales or the 

correlation of inventory investment with output. In this paper, we set the bar higher: We explain 

both static moments and the dynamic response of inventories.  
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APPENDIX A. Data and Sources 
 

The real inventory and shipments data are produced by the Bureau of Economic Analysis 

and are derived from the Census Bureau’s Manufacturers’ Shipments, Inventories, and Orders 

survey.  They are seasonally adjusted, expressed in millions of 1996 chained dollars, and cover 

the period 1959:01-2004:08 (due to issues of data availability).  An implicit price index for 

shipments is obtained from the ratio of nominal shipments to real shipments. 

The observable cost shocks include average hourly earnings of production and 

nonsupervisory workers for the nominal wage rate; materials price indexes constructed from 

two-digit producer price indexes and input-output relationships (See Humphreys, Maccini and 

Schuh (2001) for details); and crude oil prices as a measure of energy prices.   Nominal input 

prices were converted to real values using the shipments deflator. The nominal interest rate is the 

3-month Treasury bill rate.  Real rates were computed by deducting the three-month inflation 

rate calculated by the Consumer Price Index. 

 The Fed funds rate and reserves data are from the Federal Reserve Bank of St. Louis’s 

FRED II database.  The monthly interpolation of the GDP Deflator uses the seasonally adjusted 

quarterly deflator from FRED II (GDPCTPI) and the seasonally adjusted monthly producer price 

indices for crude materials, capital equipment, finished goods, and intermediate materials and 

supplies (PWCMSA, PWFPSA, PWFSA, and PWIMSA, respectively) from DRI Basic 

Economics.   

		

 


